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Abstract

Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of 

applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, 

size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose 

nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) 

were exposed for 24 and 72 h to five different NC particles to determine how variations in 
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properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine 

secretion. Our results showed that NCF were more toxic compared to CNC particles with respect 

to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory 

response with significantly elevated inflammatory cytokines/chemokines compared to NCF. 

Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the 

cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF 

to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate 

cell activator. Taken together, the present study has revealed distinct differences between fibrillar 

and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical 

in determining their toxicity.
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Introduction

In recent years, considerable attention has been placed on the development of eco-friendly 

products for use in manufacturing industry. The unique properties of nano-scale materials 

have made them attractive for a number of innovative, sustainable, and green applications 

(Iavicoli et al., 2014). Nanocellulose (NC) is an emerging class of nanomaterials possessing 

unique physical/structural properties featuring low cost, renewable, biodegradable, and 

biocompatible products (Roman, 2015). NC has been employed for a number of potential 

applications in polymer nanocomposites, tissue engineering, drug delivery vehicles, artificial 

blood vessels constructs, and wound dressings (Österberg and Cranston, 2014). Nonetheless, 

the high aspect ratio and fibrous morphology of NC, coupled with its increased use in 

industry, raises safety concerns (Shvedova et al., 2014). Therefore, it is imperative to 

thoroughly assess toxicity of NC and health outcomes.

In general, toxicological testing of nanomaterials has proven to be challenging due to their 

many different sizes, shapes, coatings, and surface reactivity (Aillon et al., 2009;Farcal et al., 

2015;Ivask et al., 2015). Furthermore, with respect to NC, differences in raw materials 

(wood, algae, hemp or cotton), preparation procedures (acid hydrolysis or homogenization), 

and post-processing techniques (bleaching/autoclaving, spray/freeze drying) yield a wide 

range of NC with varied physicochemical properties. In the present study, a panel of CNC 

and NCF was investigated to determine whether differences in material features can lead to 
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different cellular outcomes by employing lung cells as a cellular model system. CNC is a 

crystalline form of cellulose manufactured by acid hydrolysis providing long needle-like 

rods or “whiskers”. In contrast, NCF, produced via mechanical grinding and/or 

homogenization, forms long chains of soft fibrous structures.

Although many nanomaterials have been suggested to cause adverse health effects upon 

entering the body (Elsaesser and Howard, 2012;Landsiedel et al., 2012), current literature on 

the toxicity of NC is limited. Moreover, studies with conflicting results have provoked vastly 

different opinions on their safety and use. New and advanced in vitro and cell culture-based 

approaches are gaining popularity in toxicology labs, driven by governmental and scientific 

demands (Perkel, 2012). Indeed, a number of in vitro exposure systems and lung specific 

bioassays have already been developed for the assessment of respiratory toxicity of airborne 

particles (Sayes et al., 2007). A study (Clift et al., 2011) applied a 3D in vitro triple cell co-

culture model of the human epithelial airway showing cytotoxic responses accompanied by 

an increase in pro-inflammatory mediator release after exposure to CNC. There are some 

published studies on the genotoxicity of NCF in various cell models, with divergent 

outcomes (Catalan et al., 2015;de Lima et al., 2012). Furthermore, some in vivo studies have 

demonstrated evidence for NC toxicity. Another group (Cullen et al., 2000) found dose-

dependent recruitment of inflammatory cells to the mouse peritoneal cavity after exposure to 

NCF. Similarly, we previously reported that exposure to respirable CNC causes oxidative 

stress, tissue damage, and inflammatory responses in mice following pharyngeal aspiration 

(Shvedova et al., 2016;Yanamala et al., 2014).

The thorough understanding of the biological behavior of nanomaterials is imperative for 

their safe use and future applications; however, for NC and its derivatives, such information 

is lacking and requires more attention. Increasing knowledge of the characteristics of 

nanomaterials that can be used to categorize them into hazard groups would aid greatly in 

risk assessment (Braakhuis et al., 2016). The aim of the current study was to compare five 

different NC particles using in vitro approaches to determine if certain characteristics (i.e. 

size, shape, origin) yield specific cytotoxicity effects. To this end, human lung alveolar 

epithelial cells (A549) were exposed to the different particles at three concentrations: 1.5 

μg/cm2, 15 μg/cm2, and 45 μg/cm2. Cell viability, levels of glutathione (GSH), release of 

cytokines/chemokines and transmission electron microscopy (TEM) imaging were employed 

to assess cellular effects following 24 and 72 hours of exposure. Cytokine profiles were 

compared to those induced by CNF and chitin, an abundant biopolymer with structural 

similarity to NC. Overall, these results indicate that size and shape of NC particles are 

critical in determining toxicity showing that CNC and NCF could induce distinctly different 

paradigm of toxic responses in lung cells.

Materials and Methods

Particle preparation

Five different NC particles were employed for this study [CNC gel (10% wt.); CNC spray-

dried powder (CNC SD); CNC freeze-dried powder (CNC FD); NCF gel (0.9% wt.); NCF 

freeze-dried powder (NCF powder)] to compare cytoxicity outcomes (Table 1). All five NC 

particles were obtained from the USDA Forest Products Laboratory (Madison, WI). In 
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addition, two other materials e.g. chitin and CNF were used as positive controls. Chitin 

derived from shrimp shells as a purified powder form was obtained from Sigma Aldrich (St. 

Louis, MO) and CNF was purchased from Pyrograf® Products, Inc. (Cedarville, OH). The 

particle characterization of CNF has been previously reported (Kisin et al., 2011). Stock 

solutions of each particle were first prepared in USP-grade sterile water at a concentration of 

∼ 3 mg/ml and were further diluted to 1 mg/ml prior to cell exposures. The particles were 

first sterilized by autoclaving followed by brief sonication (30 s) with a probe sonicator 

(Branson Sonifer 450, 10W continuous output). Samples were also evaluated for bacterial 

endotoxin contamination, using a Peirce LAL Chromogenic Endotoxin Quantitation kit 

according to the manufacturer's instructions (Thermo Fisher Scientific, Grand Island, NY). 

Endotoxin levels for all used particles were below the detection limit (0.01 EU/ml) as 

determined by a Limulus amebocyte lysate (LAL) assay kit (Hycult Biotech, Inc., Plymouth 

Meeting, PA).

Particles characterization

Solutions of all particles were prepared by suspending the nanoparticles in USP grade sterile 

water. Atomic force microscopy (AFM) samples were made by drop casting 5 μL of 20 

mg/L solution on freshly cleaved mica. AFM was accomplished using a Multimode 

scanning probe microscope (Veeco) in tapping mode. An ACL probe (AppNano) was 

utilized at a frequency between 160–225 kHz, an amplitude set point between 1.5–1.8 V, and 

a drive amplitude between 100–300 mV. The resulting images were processed using 

Gwyddion (Brno, Czech Republic). Dynamic light scattering (DLS) analysis was performed 

on 1.0 g/L solutions using a Brookhaven Instrument Corporation ZetaPALS. A total of ten 

runs were averaged using 1.474 as the refractive index.

Cell culture and particle exposures

The human lung alveolar epithelial cell line A549 was obtained from the American Type 

Culture Collection (ATCC® CCL-185™). Cells were cultured in Dulbecco's Modified 

Eagle's Medium (DMEM) with 4.5 g/L Glucose (Lonza, Alpharetta, GA) supplemented with 

10% fetal bovine serum (FBS, Atlanta Biologicals, Atlanta, GA), 1% L-glutamine (HyClone 

Life Technologies, Grand Island, NY), and 1% penicillin-streptomycin antibiotic (HyClone 

Life Technologies, Grand Island, NY) at 37°C in a humidified atmosphere of 5% CO2. Two 

exposure time-points (24 h and 72 h) and three concentrations of particles (1.5, 15 and 45 

μg/cm2) were employed to examine toxicity outcomes. Each condition (concentration and 

time point) was conducted in duplicate. A549 cell supernatants were collected after exposure 

and frozen at −80°C until use for cytokine measurements. The cells were collected by 

treating with trypsin (Life Technologies, Grand Island, NY) followed by centrifugation at 

800 rpm for 5 min (25°C) and re-suspension in 1.0 ml PBS. The cells were used to measure 

cell viability, to perform TEM and staining. The remaining cells were frozen at −80°C in 

order to lyse the cells and use for GSH and protein sulfhydryl (SH) analysis. The highest 

dose investigated (45 μg/cm2) would result in 0.00073 μg of deposited dose per cell (∼2 

million cells per 96well-plate). A human equivalent workplace exposure to similar burden in 

alveolar type-II epithelial cells can be achieved in ∼12 years (Erdely et al., 2013;NIOSH, 

2010) at allowable exposure limits (5 mg/m3 of cellulose) defined by Occupational Safety & 

Health Administration (OSHA). For further details on these calculations and the various 
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parameters considered, please refer to the supplementary information section on the 

relevance of employed in vitro concentrations to realistic human exposures.

Transmission electron microscopy

TEM was employed to visualize A549 morphological changes 24 h and 72 h post exposure 

to different CNC and NCF materials. Cells were collected and fixed in 0.5–1.0 ml of 

Karnovsky's fixative (2.5% glutaraldehyde, 2.5% paraformaldehyde in 0.1M Sodium 

Cacodylic buffer) and post-fixed in 2% osmium tetroxide for 1 h. The cells were then 

dehydrated and embedded in Epon, sectioned, and stained with Reynold's lead citrate and 

uranyl acetate. Micrographs of the cells were obtained on a JEOL TEM 1220 microscope 

(Peabody, MA) at a working voltage of 80 kV.

Cellulose staining of exposed A549 cells

Visualization of NC in cells was performed using specific staining method described 

previously (Knudsen et al., 2015). Briefly, exposed A549 cells were fixed to glass slides by 

incubating in −20°C acetone for ten minutes. Cells were then air dried to evaporate the 

acetone and stored at –20°C. To stain the cellulose, endogenous peroxidase was first blocked 

with Ultravison Hydrogen Peroxide Block (Thermo scientific, Fremont, CA) for 10 minutes. 

After washing with PBS, nonspecific avidin binding was blocked by incubating in 30% 

rabbit normal serum with avidin from Avidin/Biotin Blocking kit (Vector Laboratories, 

Burlingame, CA) for 30 minutes and then removed by gentle suction. A biotinylated 

carbohydrate binding module (CBM) of β-1,4-glycanase (EXG:CBM) from the bacterium 

Cellulomonas fimi was then applied for 60 minutes. Slides were washed again with PBS, 

then streptavidin peroxidase conjugated (Rockland, Limerick, PA) was applied for 30 

minutes. After washing with PBS a final time, peroxidase enzyme activity was visualized by 

incubation in Large Volume DAB Chromogen Single Solution (Thermo Scientific) to 

develop the staining for 5 minutes. The cells were then counterstained with Meyer's 

hematoxylin.

Cell viability assay

Cell viability was measured using a trypan blue staining method. After 24 h and 72 h 

exposure, 20 μl of cell suspension (as described above) was added to 20 μl Trypan blue (Life 

Technologies, Grand Island, NY) and then analyzed using a Countess automated cell counter 

(Invitrogen Life Technologies, Grand Island, NY). Three independent measurements (n=3) 

were conducted to obtain the mean and standard error for each treatment group.

Protein concentrations

To determine total protein content in the A549 cell lysates and supernatants, a modified 

Bradford assay was performed according to the manufacturer's instructions (BioRad, 

Hercules, CA), with bovine serum albumin as the standard. The protein was measured as the 

OD at a wavelength of 595 nm. Data for the detection of thiols and cytokines was 

normalized using the obtained protein concentrations (mg/ml).
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Detection of GSH and SH

Glutathione level in A549 cell lysates was determined using ThioGlo®3 (Covalent 

Associates Incorporated, Corvallis, OR), a maleimide reagent which produces highly 

florescent adducts upon its reaction with –SH groups. To measure GSH, 100 μl of ThioGlo 

was added to 100 μl diluted cell lysate (20 μl cells + 80 μl PBS). A total of five replicates 

(n=5) from each cell lysate sample were analyzed to obtain the mean and standard error. 

After 30 min incubation in the dark, the fluorescence was measured using a Synergy H1 

plate reader (BioTek, Winooski, VT) with an excitation of 378 nm and emission of 446 nm 

and gain of 100. To measure protein sulfhydryl (SH), 10 μl of sodium dodecyl sulfate (SDS) 

was added to each well/sample immediately following the GSH measurement. After 1 h 

incubation in the dark the fluorescence was measured again using the same conditions listed 

above.

Cytokines/Chemokines analysis

Levels of 27 different cytokines and chemokines were assessed in the supernatants of A549 

cells exposed to the various NC particles for 24h and 72h using a human cytokine group I 

panel Bio-Plex system (Bio-Rad, Hercules, CA). The cells were also exposed to chitin or 

CNF (1.5, 15, 45 μg/cm2) for comparison. Exactly 50 μl of A549 supernatant was used for 

analysis of cytokines/chemokines. Bio-Plex Manager 6.1 software (Bio-Rad, Tokyo) was 

employed to estimate the concentration of each cytokine/chemokine/growth factors 

according to their representative standard curves. Four replicates (n=4) of each supernatant 

sample were used in the assay. Data are represented as mean values (pg/mg protein) ± SEM. 

The detection limit for each cytokine for this assay is in the range of 0.5 – 14.6 pg/ml.

Cluster Analysis of Cytokine Data

In order to differentiate between CNC and NCF nanoparticles based on their cytokine 

responses in A549 cells, hierarchical cluster analysis was performed. The measured cytokine 

concentrations were first converted to fold change compared to their levels in control 

samples and were then log2-transformed. Cytokines having measurement values below the 

detection limit were not used in the analysis. Hierarchical agglomerative (bottom up) 

clustering analysis using R (RCoreTeam, 2014) was applied to group control and the 

samples corresponding to different doses of CNC/NCF in exposed A549 cells based on their 

cytokine expression profiles induced at each post-exposure time point. A detailed cluster 

analysis of samples exposed to different CNC/NCF before and after removing missing 

cytokines measurements was performed using “Euclidean” distance similarity between the 

different samples and by employing ward.D2 linkage distance between the members of the 

clusters. By combining cytokine and sample clustering, heat maps were created with colors 

corresponding to the relative expression levels of the cytokines at each time point and 

concentration. The heat map and cluster of similar cytokines profiles and samples 

corresponding to various nanoparticles studied were produced with package heat map built 

for R version 3.1.3 (RCoreTeam, 2014).
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Statistical analysis

GSH/SH and cytokine results were compared using One Way ANOVA, while Two Way 

ANOVA was used for comparing viability data. All pairwise multiple comparison 

procedures (Holm-Sidak method) was applied for all assessments. Results are presented as 

mean ± SEM. A p value cutoff of ≤ 0.05 was considered statistically significant in all cases.

Results

Characterization of nanocellulose particles

The structure, dimension, and dispersibility of the CNC and NCF particles were 

characterized and are presented in Table 1 and Figure 1. Dynamic light scattering (DLS) 

gives the hydrodynamic diameter, while atomic force microscopy (AFM) provides the length 

and width of the individual particles. Height and amplitude representative images reveal the 

presence of needle- or rod-like morphologies for all tested particles. The DLS effective 

diameter and AFM length measurements for all materials – excluding NCF powder FD - 

correlated well. Comparable dimensions were seen for all CNC and NCF particles; however, 

DLS analysis revealed that NCF powder had the largest hydrodynamic diameter followed by 

NFC gel > CNC powder FD > CNC gel > CNC powder SD. NCF powder also had the 

highest polydispersity index, demonstrating a broad size distribution (Table 1). The 

remaining particles (NCF gel, CNC powder FD, CNC powder SD, and CNC gel) had a 

polydispersity index between 0.1–0.4 indicating a moderate size distribution. Additionally, 

dimensions of chitin were determined using TEM imaging. Chitin exhibits a stacked plate 

nanostructure with individual plates approximately 1nm thick and an average projection area 

of 25.3+10.2 nm2. The CNF diameters in the samples ranged from 60–150 nm and the 

length of the individual particles is approximately 30–100 mm (Kisin et al., 2011).

The average size/distribution and particle morphology were determined using DLS/AFM 

measurements. The measurements are represented as mean ± SD. The reported values 

correspond to the mean of ten separate runs.

Comparative cytotoxicity of different NC

The cytotoxic potential of CNC and NCF particles on A549 cells was determined using vital 

dye exclusion (Trypan blue) after 24 h and 72 h exposure. The viability after exposure to the 

three CNC materials followed the same general trend: all doses showed approximately 

10-20% decrease in viability compared to respective controls at both time-points with no 

significant dose-dependent responses (Figure 2). This was contrasted by the two NCF 

materials which exhibited a more significant decrease in cell viability and clear time-

dependent responses. The viability was significantly lower at 72 h compared to 24 h for both 

NCF powder and NCF gel at all doses - except for the NCF powder 1.5 μg/cm2 (Figure 2B). 

Generally, a 40-50% decrease in viability was noted after NCF powder and gel exposure for 

72h, while only a 10-20% decrease was shown for 24 h of exposure. For comparison, CNF 

showed clear dose-dependent responses at both time-points, with the highest dose causing a 

decrease in viability of 70% compared to control (Figure 2). Chitin, however, did not show a 

significant decrease in cell viability of A549 cells at any of the doses nor any time-

dependent responses (Figure 2).
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Cellular morphology changes and cellular uptake of NC

TEM was employed to visualize A549 cells after exposure to the highest dose (45 μg/cm2) 

of CNC and NCF particles. Morphological changes were seen starting at 24h exposure with 

all CNC/CNF particles showing the presence of tonofilaments (dark pigment/elongated), 

vacuoles and lipid droplets formation (Figure SI). At the 72 h exposure time point, a higher 

prevalence of lipid droplets, vacuoles and tonofilaments are present in the A549 cells, 

particularly in cells exposed to NCF powder, NCF gel and CNC powder (Figure S2). A549 

cells exposed to chitin and carbon nanofibers also show the presence of lipid droplets, 

vacuoles, and tonofilaments at both time points (Figures S1G-H & S2G-H). Additionally, 

CNF nanoparticles can be clearly seen inside the cells (Figures S1G & S2G).

Specific cellulose staining was used to visualize the presence/uptake of cellulose 

nanoparticles in A549 cells after 72 h exposure (Figure 3). Interestingly, no nanoparticle 

uptake was seen for fibrous nanocellulose i.e., NCF materials were seen outside, mostly 

localized at the cell boundaries of A549 cells (Figure 3, NCF Powder and Gel). However, 

CNC powder FD, CNC SD and CNC Gel can be clearly seen inside the cells, suggesting 

their uptake by A549 cells (Figure 3, insets).

Oxidative stress responses upon exposure to NC

The extent of oxidative damage caused by CNC and NCF was determined by assessing GSH 

and SH levels in A549 cells exposed for 24 h and 72 h (Figure 4). The same general trend in 

GSH levels among the three concentrations of all tested nanoparticles was seen at both time-

points, with lower levels of GSH detected at 72 h as compared to 24 h (Figure 4A-B). 

Excluding CNC gel, all concentrations of CNC and NCF led to significantly lower levels of 

GSH compared to control at both time-points. Only NCF materials showed dose-dependent 

decrease in GSH levels at 24 h (Figure 4A), while at 72 h NCF, as well as CNC powder (FD 

and SD), showed dose-dependent decreases in GSH levels (Figure 4B). NCF caused a more 

pronounced decrease in GSH compared to CNC at both of the tested time-points. NCF and 

chitin displayed a clear dose-dependent effect (Figure 4A) and the effect of chitin was more 

pronounced at 72 h compared to 24 h (Figure 4B). Similar to GSH results, SH levels were 

not significantly altered after exposure to CNC gel at 24 h or 72 h (Figure 4C-D). There was 

also no difference in levels of SH after exposure to CNC powder SD at 24 h (Figure 4C). 

NCF powder and gel induced significantly decreased levels of SH compared to control and 

to CNC-based NPs. Moreover, dose-dependent decreases in SH levels occurred after 

exposure to NCF powder and gel at both time-points (Figure 4C-D). CNF and chitin also 

triggered a decrease of SH, however, only CNF induced a dose-dependent reduction (Figure 

4C-D).

Secretion of cytokines, chemokines and growth factors

Cytokines and chemokines are important mediators of inflammatory responses. Therefore, 

27 different cytokines/chemokines were measured in the supernatants of A549 cells exposed 

to NC particles for 24h (Table SI) and 72 h (Table S2). For comparison, cells were also 

exposed to chitin and CNF. Interestingly, at both time points, cytokine levels were more 

elevated after exposure to CNC compared to NCF powder. In particular, CNC exposure (45 

μ/cm2) for 72 h significantly increased secretion of proinflammatory cytokines such as IL-6, 
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IL-8, MCP-1, IL-lra, IL-12p70 and G-CSF (Figure 5). In contrast, NCF powder and gel 

induced decreased cytokine responses. Moreover, changes in most of the cytokines were 

time dependent for all particles. Notably, cells exposed to CNC or chitin secreted cytokines 

with a similar pattern (increasing with exposure time) while NCF-induced responses were 

found to be similar to CNF (stronger at 24 h).

Hierarchical Cluster Analysis of Cytokine Responses

In order to identify and differentiate responses of CNC and NCF particles, hierarchical 

cluster analysis was performed employing all the cytokine response data corresponding to 

the various concentrations tested for each particle. The results corresponding to the ward.D2 

clustering method at 24 h and 72 h exposure are represented as a heat- map in Figure 6. The 

heat map clearly show areas of relatively high (green color) and low (red color) cytokine 

levels in certain clusters of samples. Notably, at the 24 h time- point, all concentrations of 

chitin and CNC Powder FD samples – with the exception of the 1.5 μg/cm2 of CNC Powder 

FD, were clustered together with control or unexposed samples. While all concentrations 

corresponding to CNC gel, CNC powder SD and CNF samples with the exception of 1.5 

μg/cm2 concentration of CNF were clustered together, all concentrations of NCF gel and 

powder samples, with the exception of the 15 μg/cm2 concentration of NCF gel formed a 

separate cluster suggesting a differential pattern of cytokine profiles compared to control as 

well as CNC samples. Furthermore, at 72 h of exposure, two major clusters separating CNC 

and NCF particles were observed, further suggesting a clear demarcation between fibrous 

versus crystalline (whisker) cellulose particles. As seen in Figure 6B, all samples of CNC 

materials at all concentrations were clustered together with chitin, while NCF based 

materials were found to be segregated with CNF. Moreover, the close clustering between 

CNC powder FD and SD as well as CNC gel and chitin and the branching of various 

concentrations within each sub-cluster clearly suggests that these cellulose particles can be 

unequivocally separated based on the cytokine data. Overall, these results indicate that 

crystalline nanocellulose induces an inflammatory response, while fibrillar nanocellulose 

causes cytotoxicity. Moreover, morphological differences and similarities in cellulose based 

nanoparticles could be determined based on their cytokine responses.

Discussion

In the last decade there has been an increased interest towards “green” bio-based 

nanomaterials. NC originates from cellulose, the most abundant organic polymer on earth, 

and is therefore considered natural, renewable, biodegradable and biocompatible. NC 

materials have received a great deal of attention due to their outstanding properties, 

including low-density, high surface area, hydrophilicity, and increased tensile strength, 

stiffness, and strain, compared to other nanomaterials (Chinga-Carrasco and Syverud, 

2012;Kalia et al., 2011;Moon et al., 2011;Peng et al., 2011). The same properties that make 

them excellent materials, however, may also have implications on their safety and use. NC 

may have diverse structural and chemical properties dependent on starting material and 

manufacturing process (e.g. freeze-dried verses spray-dried) (Peng et al., 2013). This needs 

to be considered as it is well established that nanoparticle size, shape, and morphology may 

influence toxicity (Hanif et al., 2014). Currently, no published results have revealed definite 

Menas et al. Page 9

Chemosphere. Author manuscript; available in PMC 2018 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



safety concerns of NC in the workplace, but indications of dose-dependent toxicity and 

inflammatory effects have been reported (Ni et al., 2012;Pereira et al., 2013). Therefore, it is 

imperative to thoroughly assess and understand the impact of NC on human health and the 

environment. Moreover, with the rapid increase in the number and diversity of NC materials 

generated from various sources and through different technological processes, alternative 

test strategies are required to reduce the reliance on primary animal testing. Thus the 

objective of the current study was to utilize such approaches to compare various types of NC 

materials to determine if biological responses of various NC materials is orchestrated by 

their differences in size, shape and morphology. This study compared two morphologically 

distinct NC particles (e.g., CNC and NCF) along with different post-processing method for 

each type. A549 cells were exposed to three different concentrations (1.5, 15 and 45 μg/cm2) 

of five types of NC materials (three CNC and two NCF) and two well-characterized positive 

controls (CNF and chitin). Overall, our results indicate that various types of NC induce 

distinct cytotoxic responses and/or cytokine signatures in lung epithelial cells. Such studies 

would enable the selection of priority NC materials (e.g., highest toxicity within each 

category) to go forward with more focused mechanistic and/or targeted animal studies.

One of the most important findings of our study was the different cell viability and oxidative 

stress responses seen after exposure to CNC compared to NCF materials. Applying a 

standard “cut-off” - limit of 20-30% generally employed in toxicity modeling approaches, 

our study would imply that CNC materials are non-toxic to lung epithelial cells (Figure 2). 

NCF materials, in contrast, caused a significant decrease in cell viability - with the lowest 

viability seen at the 72 h of exposure time-point (Figure 2B). The decrease in GSH levels - 

considered a marker of oxidative stress - was similar to differences seen in cell viability, 

with the most significant decreases after exposure to NCF materials. Some dose-dependent 

decreases in GSH levels was also noted after CNC exposure; however, these changes were 

negligible compared to NCF exposure. Overall, the observed cytotoxicity of CNC and NCF 

materials in A549 cells were strongly correlated with oxidative stress responses.

Also, it is important to mention that the cellular uptake and inflammatory responses 

following exposure to CNC and NCF materials were quite different in A549 cells. Despite 

low cytotoxicity based on the cellular viability, CNC particles induced a more robust 

inflammatory response compared to NCF. A marked increase in various pro- and anti-

inflammatory cytokines was found upon exposure to CNC materials (Tables S1 and S2, 

Figure 5), similar to those responses seen in mice after pharyngeal aspiration with CNC 

(Yanamala et al., 2014). Most of the cytokine responses followed the same trend at both 

time-points of exposure. To better understand if these cytokine responses could be used to 

delineate the differences in toxicity induced by various forms and types of NC, clustering 

analysis was performed (Figure 6). The results of the hierarchical clustering analysis 

identified distinct clusters separating the different types of NC materials based on their 

similarity in cytokine responses. Interestingly, discrete differences in cytokine responses 

were also noted between powder and gel forms of each NC type investigated. This indicates 

that even slight changes in production of NC materials could result in distinct cellular 

responses. Moreover, the inflammatory cytokine/chemokine levels in particular upon 

exposure to different CNC materials followed similar trends compared to their effective 

particle sizes i.e., CNC powder FD > CNC Gel ≥ CNC powder SD (Figure 3, Table 1). 
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Overall, we found that CNC is most similar to chitin while NCF responses were mostly 

parallel to CNF. It has been previously reported that chitin induces robust innate immune 

responses (Gandhi and Vliagoftis, 2015), while CNF are known to be cytotoxic and 

genotoxic (Kisin et al., 2011;Murray et al., 2012). Importantly, it has been reported that 

exposure to chitin can result in innate allergic inflammation characterized by alternatively 

activated macrophages and eosinophilia in vivo (Kogiso et al., 2011;Reese et al., 2007;Van 

Dyken et al., 2011). Chitin exposure is also correlated with asthma and other allergic 

diseases in humans (Van Dyken et al., 2011). However, exposure to chitin did not induce 

cytotoxicity in A549 cells, but triggered a robust inflammatory responses in this study. 

Similar to chitin, CNC also caused an increase in several factors including MCP-1/CCL-2, 

required for chitin-induced M2 polarization in vivo (Roy et al., 2012) and IL-8, a soluble 

mediator that plays an important role in airway remodeling (Hong et al., 2010;Pascual and 

Peters, 2005). This suggests that it becomes crucial to consider structural properties of 

nanomaterials and their resemblance to other biomolecules. Taken together these results 

supports the notion that both size and shape/structure plays a critical role in determining the 

biological responses of cellulose nanoparticles and their interactions with the cells. This is 

further supported by the studied uptake using cellulose immunostaining of A549 cells 

exposed to CNC or NCF (Figure 3). The CNC materials with low cytotoxicity (Figure 2), 

were taken up by A549 cells and induced a marked inflammatory response. However, no 

uptake was seen for fibrous nanocellulose i.e., NCF materials (Figure 3), which exhibited 

cytotoxicity and increased oxidative stress in A549 cells (Figures 2, 6). This finding is 

surprising when one considers that the cytotoxicity of nanoparticles, in most cases, is 

correlated with cellular uptake. This suggests that the cytotoxicity of NCF materials in A549 

cells may be caused by oxidative stress and not cellular uptake. However, the robust 

inflammatory responses found in the case of CNC particles could be a result of their active 

uptake by A549 cells. Taken together this study reveals that CNC and NCF particles may 

induce distinct responses in A549 cells through different mechanisms. While exposure to 

CNC particles triggered robust inflammatory responses, NCF particles – with larger 

diameter and smaller width's than CNC particles (Table 1) – induced cytotoxicity via 

oxidative stress mechanisms in A549 cells. Further studies aimed at defining and exploring 

the functional interactions of CNC and NCF materials with cells are needed to validate these 

findings.

Conclusions

The current study highlights the fact that used cellular models based on viability and 

oxidative damage responses alone may not be efficient in predicting the toxicity of cellulose 

nanoparticles. In particular, CNC particles were seemingly non-toxic and the different types 

of CNC tested (FD, SD and gel) could not be differentiated solely based on the viability and 

oxidative stress. However, comparative analysis of NC having different morphologies 

revealed drastic changes in the cytokine profiles despite low or no cytotoxicity. Also 

cellulose staining of exposed A549 cells indicated the uptake of CNC particles, but not NCF. 

Interestingly, effects of CNC found to be akin to chitin while NCF were more similar to 

CNF outcomes, based on the cytokine profiles. Overall, the current work provides support 

for the notion that size and shape properties of NC materials are critical in determining 
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toxicity that could further suggests inferred different mode of actions. Additional studies 

focusing on the underlying mechanisms including cellular interactions and recognition by 

specific receptors are underway to explore how different types of NC induce inflammation 

and cytotoxicity in cells. This study continues to point out the importance of considering 

various target endpoints, mechanisms or biological outcomes, not just classical assays (e.g., 

cytotoxicity), when evaluating the safety of nanomaterials using alternative test strategies. 

The findings presented in this study are limited to the type of nanocellulose based particles, 

cells and conditions investigated, and great care should be taken when generalizing our 

findings to other CNC and CNF types, isolated from different sources and those employing 

different extraction and fabrication methods. More studies that evaluate the mechanistic 

details of CNC and NCF interactions with cells employing sophisticated in vitro (e.g., 3D 

co-culture models) or ex vivo models that consider multiple target organ-specific cell types 

(Clift et al., 2011;Endes et al., 2015;Endes et al., 2014) and those that mimic in vivo like 

exposure conditions (e.g., pulmonary surfactant interactions) are still required to assess the 

potential health effects of CNC and NCF exposures and for understanding their toxicological 

profiles.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

1. Biological Responses of NC are orchestrated by their dimensions and 

morphology

2. NCF cytotoxicity may be caused by oxidative stress and not cellular uptake

3. Viability and oxidative damage models may not be effective in predicting 

toxicity

4. NC with different morphologies revealed drastic changes in the cytokine 

profiles

5. Exposure to various NC revealed distinct cytotoxic responses and cytokine 

signatures
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Figure 1. 
Representative AFM images of nanocellulose particles where A – CNC Powder FD, B – 

CNC Powder SD, C – CNC Gel, D – NCF Powder, E – NCF Gel. Atomic force microscopy 

samples were made by drop casting 5 μL of 20 mg/L solution on freshly cleaved mica. AFM 

was accomplished using a Multimode scanning probe microscope (Veeco) in tapping mode. 

The resulting images were processed using Gwyddion (Brno, Czech Republic).
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Figure 2. 
A549 cell viability responses after 24h (A) and 72h (B) exposure. Cell viability was assessed 

by trypan blue exclusion assay. White columns represent cell viability after exposure with 

1.5 μg/cm2 of nanoparticles, grey columns – 15 μg/cm2 and black columns – 45 μg/cm2. The 

results are expressed as mean ± SEM. Significance shown as p<0.05 to control (*) of two 

separate experiments in duplicates (n=3).
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Figure 3. 
Visualization of nanocellulose in A549 cells. Cellulose staining in A549 cells exposed to 45 

μg/cm2 of nanoparticles for 72h was performed using a biotinylated carbohydrate binding 

module of β-1,4-glycanase. Nanocellulose uptake by A549 cells was found only after 

exposure to CNC powder FD, CNC powder SD and CNC Gel. No nanoparticle uptake was 

seen for fibrous nanocellulose: NCF powder and NCF gel.
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Figure 4. 
Oxidative stress responses upon exposure to NC. Glutathione (GSH) and total thiol (SH) 

levels were evaluated in A549 cells exposed for 24 h (A, C) and 72hr (B,D) with three doses 

of different materials: white columns - control cell, light grey columns – 1.5 μg/cm2 of 

nanoparticles, dark grey columns – 15 μg/cm2 and black columns – 45 μg/cm . The results 

are expressed as mean ± SEM. Significance shown as p<0.05 compared to control (*), to 5 

μg/ml (β), and to 50 μg/ml (¥) of two separate experiments in duplicates with n=5.
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Figure 5. 
Cytokine response induced by exposure to nanocellulose (45 μg/cm2) for 24h (white 

columns) and 72h (black columns): A - IL-6, B - IL-8, C - MCP-1, D - IL-lra, E - IL-12p70, 

F - G-CSF. These measurements were performed using Bio-Rad 27-plex human assay kit, 

composed of a combination of pro- and anti- inflammatory cytokines with a subset of 

chemokine's. The results are presented as mean ± SEM of 2 independent experiments in 

duplicates with n=4 for each sample. Significance shown as p<0.05 compared to control (*) 

and to 24h exposure (α).
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Figure 6. 
Hierarchical cluster analysis of cytokine profiles in A549 cells exposed to various crystalline 

nanocellulose (CNC) and nanocellulose fiber (NCF) materials. The samples of A549 cells 

exposed to different concentrations of CNC and NCF along with respective controls (chitin 

and CNF) were clustered based on the Euclidean distance metric and ward.D2 clustering 

method at (A) 24 h and (B) 72 h post exposure time points. The samples corresponding to 

different nanoparticles and several cytokines measured (after removing missing values) in 

supernatants from each post exposure time point were also reordered based on their 

(dis-)similarities according to the dendrogram on the top and left, respectively. Each branch 

in the dendrogram shows the similarity between samples, i.e., the shorter the branch, the 

more similar. The heat map colors represent log2 transformed fold change values of 

cytokines relative to the minimum and maximum of all values, increasing from red to green, 
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in each case. A key showing the range of values at each post exposure time point is also 

shown in the figure.
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Table 1

Morphological characterizations of nanocellulose particles.

Particle Type DLS AFM

Diameter (nm) Polydispersity Length (nm) Width (nm)

CNC powder FD 149.8 ± 2.6 0.344 ± 0.009 158 ± 97 54 ± 17

CNC powder SD 96.6 ± 0.9 0.279 ± 0.008 104 ± 44 47 ± 11

CNC gel 137.5 ± 1.2 0.238 ± 0.008 209 ± 136 37 ± 15

NCF powder 1904.3 ± 631.6 0.431 ± 0.074 142 ± 14 28 ± 11

NCF gel 214.2 ± 6.2 0.400 ± 0.010 n/a 20 ± 4
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